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Multiple Perron-Frobenius operators
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A cycle expansion technique for discrete sums of several PF operators, similar to the one used in the
standard classical dynamicaffunction formalism is constructed. It is shown that the corresponding expansion
coefficients show an interesting universal behavior, which illustrates the details of the interference between the

particular mappings entering the sum.
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I. INTRODUCTION

Using the formalism of dynamicaj functions, one can

PACS nuni®er05.45.Ac, 05.40.Ca, 03.65.Sq

z;ﬁ(z)=1} (1—2z"AMt,),

compute global averages of the observables, associated wigh known[2] as the dynamicaj function associated with the

a fully chaotic dynamical system,

xi=Fi(X). (1)

In order to find the average for an observaldi¢x), one
defines a Perron-Frobenius operator,

L@(XVy):6[y,u._f,u(x)]eB(D(X)i (2)

wheref ,(x) is a flow associated with the syste), and 3
is a parameter. The time averaged®(x) can be found as

J
<CI)> = %ln Zmin(B)|B:01
wherez,i(B) is the smallest root of the eigenvalue equation
de(1-zL)=0. ()

For fully chaotic(axiom A) systems, the determina(®)
is an entire analytic function & which can be writtefil—3]
in an infinite product form as

aneB<1>(x)np

[AplAY

det1—zL) =[] II (1—
m p

El;[ ];[ (1—2"A%t,). 4)

Here

1
t"EA AT
|AplAp

is the weight of the prime periodic orbit of the systé)
indexed byp, A, is it's Lyapunov exponentA, is a short
notation for the amplitude, anch enumerates repetitions of
periodic orbits. The product over the prime periodic orbits
only,
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system(1), which is a meromorphic function in a certain
domain of the complex variable[1-3].

An important feature of the theory based on the dynami-
cal ¢ function considerations, is the possibility to determine
the coefficients of the power expansion of this function,

{t=1-tiz—cZ%—cg®— - - -,

using the very effective and insightful “cycle expansion”
techniqug4]. As an example, in the case of a system whose
orbits can be described by a simple binary code, one can
write the following cycle expansion of th¢ function {;11:

{m'=(1=2tg) (1= 2ty) (1~ Zto) (1= 2200 (1= Ztory) - - -
=1—(t;+tg)z— (toa—tot1)Z%—[(toor—totor)
+(to—tate) 123+ - .

It is easy to observe that in the “curvature coefficients,”
which are in this case,

Co=to1—1oly,

C3= (too1—totor) * (tor1—tatoa), %)

the contribution from long orbits is mimicked by the combi-
nations of the short ones, which contribute to the sum with
the opposite sign. As a result, the magnitude of the coeffi-
cientsc; of this expansion rapidly decrease. This allows to
estimate very effectively the asymptotics of the coefficients
of the expansioifi4,1], and to prove the analyticity properties
stated above.

Il. GENERALIZATIONS

The basis of the PF operators theory was developed by
Grothendieck in Ref.5]. His ideas were generalized recently
by Ruelle[6] and Kitaev[7], who proposed considering for-
mal sums or integrals of PF operatdrg, depending on a
certain(discrete or continuoyparametemw:
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Here,A; andA, are certain multiplicative amplitudes.
L(X,Y)=f m(dw)L [X—=f,(y)]. (6) Following the standard procedufé,2], in order to de-
scribe the asymptotics of the evolution determined by the
Here, u(dw) is some appropriate measui@]. One of the operatorL(®(x,y), we need to evaluate its largest eigen-
most important requirements imposed on such a sum or avelue, or the smallest root of the equation
integral, is that the corresponding dynamical systems have to
be fully chaotic for all the values ab e ().
As shown in[6], under certain natural requirements im-
posed on the dynamical mapping functibfx) and the am-
plitude, the corresponding functions and the Fredholm de-

de(1-zL®@)=exp- >, FTr(L(z))n
n=1

terminants are analytic functions in a certain domain of the =eXDnZl s Tr(Li,---Li )=0,

complex plane. However, the size of this domain is smaller

than the one in the case of a single PF operator. Even if th@herei, =1,2. If a sequenck; - --L; (i,=1,2) is periodic,
n

individual system4. ,(f,) have an entire Fredholm determi-
nantZ and the{ function, the size of the analyticity domain
of the averaged operatdL.) can be finite. Li---Li =(Ljs---L;n)9,

Physically, operators liké5) can be used to study chaotic ! " ! s
systems influenced by noise. Also, as shown recent[jn  wheren=s-q. Also, since only the trace of these operators
the gquantum mechanical Green’s function of certain vectofs considered, the sequences obtained from one another by

quantum particles can be presented as a sum simil@.té&  cyclic permutations give identical contributions, and there-
recent series of publications offered some effective methodfpre any lengths string contributes exactlg times. Hence,
for dealing with a system perturbed by Gaussian noise, in-

cluding that of smooth conjugatiof8] and local matrix rep- ; L, = s Tr(L L)
L= ‘ . LY,
IE s

it can be written as a power of a shorter aperiodic string,

resentatior{ 10]. However within these techniques the con- in
nection with the cycle expansion is not transparent. In this

paper we attempt to construct a cycle expansion technique i1, ....p=212,
for discrete versions of such sums, for which an analog with
cycle expansion technique is easy to establish. and for the spectral determinaf?) one has
Ill. DOUBLE PF OPERATOR Inde(1—zL®?)= 2 2 ; _Tr(L L9,
=1 1 's
The simplest “generalized PF operator” is a formal sum >
of two (noncommuting PF operatorg2), where the sum is written in terms of the poweyf the
@) . ¢ aperiodicstrings of the lengtls of the symbold_; andL,.
LY (x,y) =A16(y,—F1,0)+A6(y ,— 5,(x).  (7) Using the formula

5[y/.l,_ fl,ﬂ(zl)]' o 5[Zn,M_f2,M(X)]: 5[)/”_ fl,;Lon,/.Lo' ’ 'Ofn,/.l,(x)]l

one gets the following expression for the trace of a generic term in the exponent:
THL 9= [ 1,00y L (Y 100Xy -dyn71=J B~ 1L.(y))- -+ X 3y~ ! (0)dx dyy- -y 1

= [ e 001=3 A(S|

wherew’s are the fixed points of the mdp (y;)°- - -°f; (x). The numbers, ands, show how many times the operatdrg
andL, appear in the stringil- L Obviously,s; +s,=s. Here, for simplicity, we pufA;=A,=1, to avoid unnecessary

complications in formulas. The dependence on the amplitudes is easy to reconstruct at the final step, so they will be ignored
until the very last section.
Hence, there is an infinite number of nonequivalent operaiqrs -L;» corresponding to each aperiodic string, and we are
S

looking at their fixed points. Proceeding as usual, we can expand the denominator:

—EE

|1— A(S)| W A(S)|A(S)m
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Here, (s) denotes any of the aperiodic sequences of the leggéimd Ags’ represents the expansion factor of a prime orbit
indexed by ‘p” of a composite operatok; ---L;_. Substituting this expansion series into the exponent yields the following

Fredholm determinant:

T D R 91 81 [FS

() m=0r=1 |A§)S)|A§f)m

Zs-np

CIINCLIA
AR A

Correspondingly, the product

=11 11 (kﬂ) 8)

CITNCR
AP A

can be considered as a generalization ofglienction of the The only length-two strind., L, (the first “interference”

single-PF operatof3). correction produces it's own? function, which contributes
This object is quite different from it's one-mapping coun- the term

terpart. While the single-mapping function (3) is defined

on the periodic orbits of the systeff), the productgr;1 is g—l(zlLle):H (1—22"t1?)
taken over the fixed points of th@periodig combinations p .
fi;e---ofi;, which can be thought of as “interference” 122 Al

terms. Expanding thés) product in(8), one has
to the product. Herg?, c3®, c3?, etc., are the fundamental

§_1=H 1— z" _ (z%)" cycles and the curvature corrections for the mapping
m (1) A (D) @) A @m of 5(x).
P [AIAG |AL A 2 .
The two length-three stringk;L4L, and L,L,L, con-
( (Z%)" ) © tribute
X _——— e
|AE)3)|A§)3)m

ML) =] -2t
In order to avoid unnecessary complication of formulas, P
the repetition indexm will be suppressed in the sequel. The :1—z3tf112— 051226_0%1229 .
parentheseél), (2), (3) and so on impIy the product over all

the possible aperiodic combinatiots, - o =12, of and

lengths 1, 2, 3 correspondingly. For mstance the first bracket

consists of the simple product of twbfunctions(two pos- g—l(z||_1|_2|_2):1_[ (1_znpté22)

sible length-one strings p

l"p[ (1—znpt§}))=1"p[ (1—znptg)1'p[ (1—2%t2),

S1- AP 6 o120

correspondingly, and so on. The top index shows the aperi-
odic strings of operatork; andL,, while the lower index
enumerates the prime orbits of each operatﬁé)r.represents
1 the fundamental cycle of a gives) operatorl; - --Lj, and
t'p— T the coefficients:ff) give the corresponding curvature correc-
|Ap|Ap tions.

It is important to notice that the symbolic dynamics of the
individual mappings, used to obtain the expressions for
ML), UL, CHELLL,), H(ELLL,),

2Ly = H (1-z ptp) 1-tfz—ci?—ci® ..., etc., do not need to be specified. In fact, one might use dif-
ferent symbolic dynamics in order to obtain the power ex-
pansion for these functions. After the necessary expansion
-1 _ Npt2y — 2 2,2 2.3 series are at hand, the details of the symbolic dynamics of
(ML) =11 (A-2p=1-tfz- -3z’ the corresponding mappings are irre>llevant T)rlte further
analysis is made entirely in terms of tH&'s andc{®s.
The termtf andtf represent the fundamental cycles, and the | et us consider the power expansion of all thproducts
coeff|C|entsc and c denote the curvature corrections for up to the third power oz The expansion for the two-PF
the first and the second mapping correspondingly. operator will then be

where

This is just the product of the individudl functions,
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(N2 =[1-t{z— 3z — 32— O(ZH [ 1-t?z— 32— c32°8— O(ZY)]
X[1-Z2tF—0(zH[1- 2t~ 0(5) [1- £t?— 0(25)]
=1-(tf+tHz— [t~ tit]) + ca+ c312° - (17— 71D — (72— thtp)

—(t}+t?)(ch+cd) +tici+t2ca+ i+ c312+ O(ZY), (10)

and so on, wheré/’s andc!, are the fundamental contribu- Also, every term contains the sum of all the standard curva-
tions and the curvature corrections of the individual map-ture coefficientsc, of the corresponding degree, associated
pings. with the “pure” mapsf(x) andf,(x).

Comparing the expressioli$0) and (4), one can see that In short notations, which are going to be used below, the
the structure of the coefficients and ¢, is repeated on a expansion(10) can be written as

“new level.” The “fundamental” contribution is now
2

2 2
it S c;)—z3(c3—z 03 o)
i=1 i=1 i=1

T =ti+1f, L (2)=1-2T-2

and the following terms have a structure similar to the cor-

2 2
responding ‘“curvature corrections” in the case of a system n icl 1 il ro(A
with complete binary dynamicgl). For example the term .Zl tic2 .21 C3| +0O(2). D
412 1.1
Co=ti"—tsty, It should be emphasized that the coefficiehisandC,, are

principally different from their usual, single PF counterparts
t; andc,. They are constructed using the contributions of
different mappings, not only thé;(x) and f,(x) but also
(t122— 2t + (11— t11) from all their aperiodic superpositions, and therefore produce
some “interference” effect.

is formally identical to thec, of (5), the termCj3 also con-
tains terms

of manifestly “curvature correction” type.
However, starting fronC3 there start to appear some ad- IV. TRIPLE PF OPERATOR

ditional curvature combinations, such as
One can easily write down the explicit form of the power

(tH+1?)(ci+c5) —tfes—tcs. expansion for the triple PF operator

L@(x,y)=A18(y,,— f1,00)+Ar8(y,,— £5,(x) + Agd(y, — f5,(x)). (12)

As in the double PF operator case, the expansion is made up to the third order:

3 3 3
5\;1(2):1_[l [1-tiz—chz?—cy—O(zH]] | [1—22tifj—O(z4)]11 [1-22tP - 0(2%)]
i= ij ij
=1—z(tF+ 24+ 13) — 2 (t2P—2) + (17— 1)) + (172 ttd) + co+ e+ 3] + 2 (17—t P
(P 1) + (G2 )+ (22 10+ (4 ) + (67— 6 + 754 72— = £
—tHB+ 1B+t -t (ca+ o) —t2(cs+ c3) — t3(ci+ cd) + (c3+ 3+ cd) ]+ O(2Y, (13

wheret;, c, are the fundamental contributions and the curvature corrections of the corresponding mappings.
It is easy to observe that the above expansion is very similar to the one obtained for a system with a complete ternary
symbolic dynamics, for which the expansion coefficients are

t=t5+t,+t,,
8= (tig—tyta) + (tog—toty) + (tro—tyty),
8= (tha3— tataa) + (too3—totog) + (tiza—tatsa) + (tiig—titsd) + (tapp—tots)
+ (o= tityn) Htoggt tips—tatio—totiz—tytost tytots.
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Using the notationg ¥, C8, Cc for the corresponding combinations of prime contributionli4), we get for the triple
operator functions:

3 3 3 3
LGl 2=1-zT¥-2 C(23)+i2l c'z) (C(3) ; t! 21 Ci2+i21 tifcizﬁtiz1 c | +0(z%).
Comparing this to the expansion of the double PF operator,
2 2 2 2
LY2=1-zT-2 C(22)+Zl c ) -z (C(z)—z t! Z ;1 t'fc'zﬂtiz1 ch | +0(2Y,

it is easy to observe that the curvature coefficients have the N
same structure, depending trivially on the number of the PF EEN)EE Ch,
operators in the sum elements. The main difference is con- !
tained in the term®, C{*) as opposed t€Ct?, CP,

N N N
because they are constructed as the curvature terms of sys- ~(N)_ i i
. . . - cy'= t} ch C,+ Cs3, 1
tems with binary and ternary symbolic dynamics correspond- 3 ;1 .21 .21 ot 2 s (17
ingly.

V. N SUMS AND THE CONTINUOUS LIMIT . o
can be called “direct curvature contrlbutlons” as opposed to

Previous analysis can be conducted in the exact same wale “interference curvaturesC

for any N-operator sumN=2), The direct curvature term(;l?) depend trivially on the
N number of PF operators included into the s(tB). Among
LN v =S stv — 1 (50). 14 the interference curvature terms, only the fundamental con-
%y) Z Vo (0) (14 tribution term T; is just the direct sum of the individual
_ fundamental contributions.
For the Fredholm determinant det(ZL) one has It is important to emphasize, that the complete curvature
- coefficients have aniversal form
z
— = —_ —_ n ~ ~
det(1-zL) exp( ngl = Tr(L )) TN =N TN (18
z5Mp which provides an algorithm for evaluating tlgefunction
= H H H _W . (19 expansion coefficients of the multiple PF operators to a given
m s P [AGIAG degreen. Moreover, the direct curvature coefficients depend

H|V|ally on the order of the sunl5). This allows to make
certain statements about the behavior of t@ntinuous
sums,

Based on the previous examples and using the inductio
method, one can prove that the power expansion of{the
function of anN-term PF operator is

N
gNl(Z):l_zﬁN)_f(C(Nuz Ciz) Loon) = [ mdomsm,— o), (9

N N N N from the point of view of the standard cycle expansion tech-
3] AN i i i i nique. Here the amplitude&, and the mapping functions
z°| CyV+ t c tico+ c .
( P26 e 2 et 2, ) f!,(x,») depend continuously on the parameser
4 After some elementary considerations it is easy to recon-
+0(2), (16) struct the explicit amplitude dependence in the expansions of
the MPF operators{ functions,

where

N Zs-npA(s)np

_ at=1111 ( — g o (20

2,1 t N & |A§)s)|Ags)m
andC{, c{V, etc., have the structure identical to the cur-whereA®=AZ1. .. A>N. The product over thés) includes all
vature correction coefficients of a system with a completaghe possible strings in which the symbdls, . . . Ly appear
N-ary symbolic dynamics. The extra terms which appear irs;, ... ,S; times correspondingly, for al;+ - .- +sy=s.
the expansiori16), The expansion 0f20) yields:
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N N
Ni=1-2 Ait}—zZ(A<2>cz+E Afc;) £§ix=1—2f tf(w)u(dw)—zz(c%f Cz(w)u(dzw))
=1 =1
N N
_23(A(3)C3+2 A?CiS_E Aitif _ZS(C§+ftf(w)M(dw)f Cz(w),u,(dza))
=1 i=1
+f tfcz(w)u(d%))—J C3(a)),u(d3w))

+0(zY.

N N
X 21 AZch+ '21 Adtic
= = +0(zY).
Without loss of generality, one can assume that there ex-

ists such a set of discrete parametes . . . oy, that the This expansion is analogous to the cumulant expansion of
curvature corrections of the individual maps can be written P . 1a/09 P
as det(1—zL) obtained in[10].

ti=ty( o)),
VI. CONCLUSION

[
Ch=Cn(®). (1) From a practical as well as from a theoretical point of

view, it is certainly more convenient to treat the continuous
sum case using the methods developed9ri0], because
these methods effectively circumvent some convoluted cal-
cplations, which are necessary to evaluate the expansion co-
Bicients (17). However, for discrete versions of such
“noisy” PF operators, the multiple sun&4), these methods

In case the amplitude®\, and the mapping functions
f;(x,w) in (20) depend continuously on the parameter
the coefficientg19) also depend continuously an, at least
for a certain range of parameters. Therefore, the fundament
contribution coefficient will produce in the limN—co:

N cannot be applied directly. Meanwhile, as was shown above,
TN = > Aitif_)-rf:f ti(w)u(dw). such systems allow a direct treatment which is analogous to
i=1 the standard cycle expansion technique. The detailed form of

the corresponding expansion coefficiefis) reveals a re-
markable structural simplicity and shows certain a familiar
features characteristic for the single-operator expansion co-
N efficients.
TN=> AZh=> AiZCz(wi)—;ézEj o) u(d?w), In practice, even in the case of a single PF operator, one
i=1 i=1 can usually obtain only the first several terms of the cycle
expansion series. In the case of multiple PF operators, the
~ P explicit form of the generalized curvaturék/) convenientl
Cs=f tf(w),u(dw)f Co(w)pu(d*w) iIIuZtrates the detailg of the interference between the diff)(/arent
maps constituting a multiple PF operator, using the language
_J thZM(dSW)+J ol @) p(dBw), of the periqdic cycle_s_arising from the maps the_mselves as
well as their compositions. This provides a nontrivial exten-
sion of the periodic orbit theory to a more complicated
dynamical evolution which involves a few “evolution
ghannels.”

The direct curvature contributions in the expansib) also
can be written in the integral form:

On the other hand, the interference curvature coefficient
C™ the limit N— are considerably more complicated,
since the elements contained in the higher order interference
curvatureC(N), n=3, are labeled by the aperiodic stringfs
complexity N | am grateful to Professor R. Artuso for reading the manu-

However, theN—co limit for the interference coefficients script and making useful comments. The author gratefully
exist[1,9,10, and thereforg function ! has the following acknowledges financial support by NSF Grant Nos. PHY-
expansion form: 9900730 and PHY-9900746.
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