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Multiple Perron-Frobenius operators
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A cycle expansion technique for discrete sums of several PF operators, similar to the one used in the
standard classical dynamicalz-function formalism is constructed. It is shown that the corresponding expansion
coefficients show an interesting universal behavior, which illustrates the details of the interference between the
particular mappings entering the sum.
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I. INTRODUCTION

Using the formalism of dynamicalz functions, one can
compute global averages of the observables, associated
a fully chaotic dynamical system,

ẋi5Fi~x!. ~1!

In order to find the average for an observableF(x), one
defines a Perron-Frobenius operator,

LF~x,y!5d@ym2 f m~x!#ebF(x), ~2!

where f m(x) is a flow associated with the system~1!, andb
is a parameter. The time average ofF(x) can be found as

^F&5
]

]b
ln zmin~b!ub50 ,

wherezmin(b) is the smallest root of the eigenvalue equati

det~12zL!50. ~3!

For fully chaotic~axiom A) systems, the determinant~3!
is an entire analytic function ofz, which can be written@1–3#
in an infinite product form as

det~12zL!5)
m

)
p

S 12
znpebF(x)np

uLpuLp
m D

[)
m

)
p

~12znpAp
nptp!. ~4!

Here

tp[
1

uLpuLp
m

is the weight of the prime periodic orbit of the system~1!
indexed byp, Lp is it’s Lyapunov exponent,Ap is a short
notation for the amplitude, andm enumerates repetitions o
periodic orbits. The product over the prime periodic orb
only,
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ith

zm
21~z!5)

p
~12znpAnptp!,

is known@2# as the dynamicalz function associated with the
system~1!, which is a meromorphic function in a certai
domain of the complex variablez @1–3#.

An important feature of the theory based on the dyna
cal z function considerations, is the possibility to determi
the coefficients of the power expansion of this function,

zm
21512t fz2c2z22c3z32•••,

using the very effective and insightful ‘‘cycle expansion
technique@4#. As an example, in the case of a system who
orbits can be described by a simple binary code, one
write the following cycle expansion of thez function zm

21 :

zm
215~12zt0!~12zt1!~12z2t01!~12z3t001!~12z3t011!•••

512~ t11t0!z2~ t012t0t1!z22@~ t0012t0t01!

1~ t0112t1t01!#z
31••• .

It is easy to observe that in the ‘‘curvature coefficients
which are in this case,

c25t012t0t1 ,

c35~ t0012t0t01!1~ t0112t1t01!, ~5!

•••,

the contribution from long orbits is mimicked by the comb
nations of the short ones, which contribute to the sum w
the opposite sign. As a result, the magnitude of the coe
cientsci of this expansion rapidly decrease. This allows
estimate very effectively the asymptotics of the coefficie
of the expansion@4,1#, and to prove the analyticity propertie
stated above.

II. GENERALIZATIONS

The basis of the PF operators theory was developed
Grothendieck in Ref.@5#. His ideas were generalized recent
by Ruelle@6# and Kitaev@7#, who proposed considering for
mal sums or integrals of PF operatorsLv , depending on a
certain~discrete or continuous! parameterv:
©2001 The American Physical Society09-1
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L ~x,y!ÄE m~dv!Lv@x2 f v~y!#. ~6!

Here, m(dv) is some appropriate measure@6#. One of the
most important requirements imposed on such a sum o
integral, is that the corresponding dynamical systems hav
be fully chaotic for all the values ofvPV.

As shown in@6#, under certain natural requirements im
posed on the dynamical mapping functionf (x) and the am-
plitude, the correspondingz functions and the Fredholm de
terminants are analytic functions in a certain domain of
complex plane. However, the size of this domain is sma
than the one in the case of a single PF operator. Even if
individual systemsLv( f v) have an entire Fredholm determ
nantZ and thez function, the size of the analyticity domai
of the averaged operator^L& can be finite.

Physically, operators like~5! can be used to study chaot
systems influenced by noise. Also, as shown recently in@8#,
the quantum mechanical Green’s function of certain vec
quantum particles can be presented as a sum similar to~6!. A
recent series of publications offered some effective meth
for dealing with a system perturbed by Gaussian noise,
cluding that of smooth conjugations@9# and local matrix rep-
resentation@10#. However within these techniques the co
nection with the cycle expansion is not transparent. In t
paper we attempt to construct a cycle expansion techn
for discrete versions of such sums, for which an analog w
cycle expansion technique is easy to establish.

III. DOUBLE PF OPERATOR

The simplest ‘‘generalized PF operator’’ is a formal su
of two ~noncommuting! PF operators~2!,

L (2)~x,y!5A1d„ym2 f 1m
t ~x!…1A2d„ym2 f 2m

t ~x!…. ~7!
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Here,A1 andA2 are certain multiplicative amplitudes.
Following the standard procedure@1,2#, in order to de-

scribe the asymptotics of the evolution determined by
operatorL (2)(x,y), we need to evaluate its largest eige
value, or the smallest root of the equation

det~12zL(2)!5exp2 (
n51

`
zn

n
Tr~L (2)!n

5exp(
n51

`

(
u i u5n

Tr~Li 1
•••Li n

!50,

wherei k51,2. If a sequenceLi 1
•••Li n

( i k51,2) is periodic,
it can be written as a power of a shorter aperiodic string

Li 1
•••Li n

5~Li
18
•••Li

s8
!q,

wheren5s•q. Also, since only the trace of these operato
is considered, the sequences obtained from one anothe
cyclic permutations give identical contributions, and the
fore any length-s string contributes exactlys times. Hence,

(
u i u5n

Tr~Li 1
•••Li n

!5 (
q51

(
u i u5s

s•Tr~Li
18
•••Li

s8
!q,

i 1 , . . . ,i n51,2,

and for the spectral determinant~7! one has

ln det~12zL(2)!5 (
q51

`

(
s51

`

(
u i u5s

zs•q

q
Tr~Li 1

8 •••Li
s8
!q,

where the sum is written in terms of the powersq of the
aperiodicstrings of the lengths of the symbolsL1 andL2.

Using the formula
y
ignored

are
d@ym2 f 1,m~z1!#•••d@zn,m2 f 2,m~x!#5d@ym2 f 1,m+ f 2,m+•••+ f n,m~x!#,

one gets the following expression for the trace of a generic term in the exponent:

Tr~Li 1
¯Li s

!q5E Li 1
~x,y1!•••Li n

~yn21 ,x!dx dy1•••dyn215E d„x2 f i 1
t ~y!…•••3d„y2 f i n

t ~x!…dx dy1•••dyn21

5E d@x2 f i 1
~y!+•••+ f i n

~x!#5(
w

1

u12Lw,q
(s) u

,

wherew’s are the fixed points of the mapf i 1
(y1)+•••+ f i n

(x). The numberss1 ands2 show how many times the operatorsL1

andL2 appear in the stringLi 1
•••Li s

. Obviously,s11s25s. Here, for simplicity, we putA15A251, to avoid unnecessar
complications in formulas. The dependence on the amplitudes is easy to reconstruct at the final step, so they will be
until the very last section.

Hence, there is an infinite number of nonequivalent operatorsLi
18
•••Li

s8
corresponding to each aperiodic string, and we

looking at their fixed points. Proceeding as usual, we can expand the denominator:

1

u12Lw,q
(s) u

5(
w

(
m50

`
1

uLw,q
(s) uLw,q

(s)m
.
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Here, ~s! denotes any of the aperiodic sequences of the lengths, andLp
(s) represents the expansion factor of a prime or

indexed by ‘‘p’’ of a composite operatorLi 1
¯Li s

. Substituting this expansion series into the exponent yields the follow
Fredholm determinant:

det~12zL!5exp2(
(s)

(
p

(
m50

`

(
r 51

`
1

r S zs•np

uLp
(s)uLp

(s)mD r

5 )
m50

`

)
(s)

)
p

S 12
zs•np

uLp
(s)uLp

(s)mD .

Correspondingly, the product

zm
215)

(s)
)

p
S 12

zs•np

uLp
(s)uLp

(s)mD ~8!
n-
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can be considered as a generalization of thez function of the
single-PF operator~3!.

This object is quite different from it’s one-mapping cou
terpart. While the single-mappingz function ~3! is defined
on the periodic orbits of the system~1!, the productzm

21 is
taken over the fixed points of the~aperiodic! combinations
f i

18
+•••+ f i

s8
, which can be thought of as ‘‘interference

terms. Expanding the~s! product in~8!, one has

zm
215)

p
S 12

znp

uLp
(1)uLp

(1)mD S 12
~z2!np

uLp
(2)uLp

(2)mD
3S 12

~z3!np

uLp
(3)uLp

(3)mD ••• . ~9!

In order to avoid unnecessary complication of formul
the repetition indexm will be suppressed in the sequel. Th
parentheses~1!, ~2!, ~3! and so on imply the product over a
the possible aperiodic combinationsLi 1

•••Li s
, i 51,2, of

lengths 1, 2, 3 correspondingly. For instance, the first brac
consists of the simple product of twoz functions~two pos-
sible length-one strings!,

)
p

~12znptp
(1)!5)

p
~12znptp

1!)
p

~12znptp
2!,

where

tp
i [

1

uLp
i uLp

m
.

This is just the product of the individualz functions,

z21~zuL1!5)
p

~12znptp
1!512t f

1z2c2
1z22c3

1z3 . . . ,

z21~zuL2!5)
p

~12znptp
2!512t f

2z2c2
2z22c3

2z3 . . . .

The termt f
1 andt f

1 represent the fundamental cycles, and
coefficientsci

1 and ci
2 denote the curvature corrections f

the first and the second mapping correspondingly.
04620
,
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The only length-two stringL1L2 ~the first ‘‘interference’’
correction! produces it’s ownz function, which contributes
the term

z21~zuL1L2!5)
p

~12z2nptp
12!

512t f
12z22c2

12z42c3
12z6 . . . ,

to the product. Heret f
12, c2

12, c3
12, etc., are the fundamenta

cycles and the curvature corrections for the mappingf 1
+ f 2(x).

The two length-three stringsL1L1L2 and L1L2L2 con-
tribute

z21~zuL1L1L2!5)
p

~12z3nptp
112!

512z3t f
1122c2

112z62c3
112z9 . . . ,

and

z21~zuL1L2L2!5)
p

~12znptp
122!

512z3t f
1222c2

122z62c3
122z9 . . . ,

correspondingly, and so on. The top index shows the ap
odic strings of operatorsL1 and L2, while the lower index
enumerates the prime orbits of each operator.t f

(s) represents
the fundamental cycle of a given~s! operator,Li 1

•••Li s
, and

the coefficientscn
(s) give the corresponding curvature corre

tions.
It is important to notice that the symbolic dynamics of t

individual mappings, used to obtain the expressions
z21(zuLi), z21(zuL1L2), z21(zuL1L1L2), z21(zuL1L2L2),
etc., do not need to be specified. In fact, one might use
ferent symbolic dynamics in order to obtain the power e
pansion for these functions. After the necessary expan
series are at hand, the details of the symbolic dynamics
the corresponding mappings are irrelevant. The furt
analysis is made entirely in terms of thet f

(s)’s andcn
(s)’s.

Let us consider the power expansion of all thez-products
up to the third power ofz. The expansion for the two-PF
operator will then be
9-3
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z2
21~z!5@12t f

1z2c2
1z22c3

1z32O~z4!#@12t f
2z2c2

2z22c3
2z32O~z4!#

3@12z2t f
122O~z4!#@12z3t f

1122O~z6!#@12z3t f
1222O~z6!#

512~ t f
11t f

2!z2@~ t f
122t f

1t f
2!1c2

11c2
2#z22@~ t f

1222t f
2t f

12!2~ t f
1122t f

1t f
12!

2~ t f
11t f

2!~c2
11c2

2!1t f
1c2

11t f
2c2

21c3
11c3

2#z31O~z4!, ~10!
-
p

t

or
em
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and so on, wheret f
i ’s and cn

i are the fundamental contribu
tions and the curvature corrections of the individual ma
pings.

Comparing the expressions~10! and~4!, one can see tha
the structure of the coefficientst f and cn is repeated on a
‘‘new level.’’ The ‘‘fundamental’’ contribution is now

Tf
(2)5t f

11t f
2 ,

and the following terms have a structure similar to the c
responding ‘‘curvature corrections’’ in the case of a syst
with complete binary dynamics~4!. For example the term

C2[t f
122t f

1t f
1 ,

is formally identical to thec2 of ~5!, the termC3 also con-
tains terms

~ t f
1222t f

2t f
12!1~ t f

1t f
122t f

112!

of manifestly ‘‘curvature correction’’ type.
However, starting fromC3 there start to appear some a

ditional curvature combinations, such as

~ t f
11t f

2!~c2
11c2

2!2t f
1c2

12t f
2c2

2 .
04620
-

-

Also, every term contains the sum of all the standard cur
ture coefficientscn of the corresponding degree, associat
with the ‘‘pure’’ maps f 1(x) and f 2(x).

In short notations, which are going to be used below,
expansion~10! can be written as

z2
21~z!512zTf2z2S C21(

i 51

2

c2
i D 2z3S C32(

i 51

2

t f
i (
i 51

2

c2
i

1(
i 51

2

t f
i c2

i 1(
i 51

2

c3
i D 1O~z4!. ~11!

It should be emphasized that the coefficientsTf andCn are
principally different from their usual, single PF counterpa
t f and cn . They are constructed using the contributions
different mappings, not only thef 1(x) and f 2(x) but also
from all their aperiodic superpositions, and therefore prod
some ‘‘interference’’ effect.

IV. TRIPLE PF OPERATOR

One can easily write down the explicit form of the pow
expansion for the triple PF operator
ternary
L (2)~x,y!5A1d„ym2 f 1m
t ~x!…1A2d„ym2 f 2m

t ~x!…1A3d„ym2 f 3m
t ~x!…. ~12!

As in the double PF operator case, the expansion is made up to the third order:

z3
21~z!5)

i 51

3

@12t f
i z2c2

i z22c3
i z32O~z4!#)

i j

3

@12z2t f
i j 2O~z4!#)

i jk

3

@12z3t f
i jk2O~z6!#

512z~ t f
11t f

21t f
3!2z2@~ t f

232t f
2t f

3!1~ t f
132t f

1t f
3!1~ t f

122t f
1t f

2!1c2
11c2

21c2
3#1z3@~ t f

2232t f
2t f

23!

1~ t f
2332t f

3t f
23!1~ t f

1122t f
1t f

12!1~ t f
1222t f

2t f
12!1~ t f

1132t f
1t f

13!1~ t f
1332t f

3t f
13!1t f

2131t f
1322t f

3t f
122t f

2t f
13

2t f
1t f

231t f
1231t f

1t f
2t f

32t f
1~c2

21c2
3!2t f

2~c2
11c2

3!2t f
3~c2

11c2
3!1~c3

11c3
21c3

3!#1O~z4!, ~13!

wheret f , cn are the fundamental contributions and the curvature corrections of the corresponding mappings.
It is easy to observe that the above expansion is very similar to the one obtained for a system with a complete

symbolic dynamics, for which the expansion coefficients are

t f
(3)5t31t21t1 ,

c2
(3)5~ t132t1t3!1~ t232t2t3!1~ t122t1t2!,

c3
(3)5~ t2332t3t23!1~ t2232t2t23!1~ t1332t3t13!1~ t1132t1t13!1~ t1222t2t12!

1~ t1122t1t12!1t2131t1232t3t122t2t132t1t231t1t2t3 .
9-4
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Using the notationsTf
(3) , C2

(3) , C3
(3) for the corresponding combinations of prime contributions in~14!, we get for the triple

operatorz functions:

z3
21~z!512zTf

(3)2z2S C2
(3)1(

i 51

3

c2
i D 2z3S C3

(3)2(
i 51

3

t f
i (
i 51

3

c2
i 1(

i 51

3

t f
i c2

i 1(
i 51

3

c3
i D 1O~z4!.

Comparing this to the expansion of the double PF operator,

z2
21~z!512zTf

(2)2z2S C2
(2)1(

i 51

2

c2
i D 2z3S C3

(2)2(
i 51

2

t f
i (
i 51

2

c2
i 1(

i 51

2

t f
i c2

i 1(
i 51

2

c3
i D 1O~z4!,
th
P
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it is easy to observe that the curvature coefficients have
same structure, depending trivially on the number of the
operators in the sum elements. The main difference is c
tained in the termsC2

(3) , C3
(3) as opposed toC2

(2) , C3
(2) ,

because they are constructed as the curvature terms of
tems with binary and ternary symbolic dynamics correspo
ingly.

V. N SUMS AND THE CONTINUOUS LIMIT

Previous analysis can be conducted in the exact same
for any N-operator sum (N>2),

L (N)~x,y!5(
i 51

N

d„ym2 f i ,m
t ~x!…. ~14!

For the Fredholm determinant det(12zL) one has

det~12zL!5expS 2 (
n51

`
zn

n
Tr~Ln!D

5)
m

)
s

)
p

S 12
zs•np

uLp
(s)uLp

(s)mD . ~15!

Based on the previous examples and using the induc
method, one can prove that the power expansion of thz
function of anN-term PF operator is

zN
21~z!512zTf

(N)2z2S C2
(N)1(

i 51

N

c2
i D

2z3S C3
(N)1(

i 51

N

t f
i (
i 51

N

c2
i 2(

i 51

N

t f
i c2

i 1(
i 51

N

c3
i D

1O~z4!, ~16!

where

Tf
(N)5(

i 51

N

t f
i ,

andC2
(N) , C3

(N) , etc., have the structure identical to the cu
vature correction coefficients of a system with a compl
N-ary symbolic dynamics. The extra terms which appea
the expansion~16!,
04620
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c̃2
(N)[(

i 51

N

c2
i ,

c̃3
(N)[(

i 51

N

t f
i (
i 51

N

c2
i 2(

i 51

N

t f
i c2

i 1(
i 51

N

c3
i , ~17!

. . . ,

can be called ‘‘direct curvature contributions’’ as opposed
the ‘‘interference curvatures’’Cn

(N) .
The direct curvature terms~17! depend trivially on the

number of PF operators included into the sum~15!. Among
the interference curvature terms, only the fundamental c
tribution term Tf is just the direct sum of the individua
fundamental contributions.

It is important to emphasize, that the complete curvat
coefficients have auniversal form,

C̃n
(N)5Cn

(N)1 c̃n
(N) , ~18!

which provides an algorithm for evaluating thez-function
expansion coefficients of the multiple PF operators to a gi
degreen. Moreover, the direct curvature coefficients depe
trivially on the order of the sum~15!. This allows to make
certain statements about the behavior of thecontinuous
sums,

L ~x,y!5E m~dv!Avd„ym2 f m
t ~x,v!…, ~19!

from the point of view of the standard cycle expansion te
nique. Here the amplitudesAv and the mapping functions
f m

t (x,v) depend continuously on the parameterv.
After some elementary considerations it is easy to rec

struct the explicit amplitude dependence in the expansion
the MPF operators’z functions,

zN
215)

(s)
)

p
S 12

zs•npA(s)np

uLp
(s)uLp

(s)mD , ~20!

whereA(s)[A1
s1
•••A2

sN. The product over the~s! includes all
the possible strings in which the symbolsL1 , . . . ,LN appear
s1 , . . . ,s2 times correspondingly, for alls11•••1sN5s.
The expansion of~20! yields:
9-5
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zN
21512z(

i 51

N

Ait f
i 2z2S A(2)C21(

i 51

N

Ai
2c2

i D
2z3S A(3)C31(

i 51

N

Ai
3c3

i 2(
i 51

N

Ait f
i

3(
i 51

N

Ai
2c2

i 1(
i 51

N

Ai
3t f

i c2
i D 1O~z4!.

Without loss of generality, one can assume that there
ists such a set of discrete parametersv1 , . . . ,vN , that the
curvature corrections of the individual maps can be writ
as

t f
i [t f~v i !,

cn
i [cn~v i !. ~21!

In case the amplitudesAv and the mapping function
f m

t (x,v) in ~20! depend continuously on the parameterv,
the coefficients~19! also depend continuously onv, at least
for a certain range of parameters. Therefore, the fundame
contribution coefficient will produce in the limitN→`:

Tf
(N)5(

i 51

N

Ait f
i →Tf5E t f~v!m~dv!.

The direct curvature contributions in the expansion~17! also
can be written in the integral form:

c̃2
(N)[(

i 51

N

Ai
2c2

i [(
i 51

N

Ai
2c2~v i !→ c̃2[E c2~v!m~d2v!,

c̃3[E t f~v!m~dv!E c2~v!m~d2v!

2E t fc2m~d3v!1E c3~v!m~d3v!,

. . . .

On the other hand, the interference curvature coefficie
Cn

(N) the limit N→` are considerably more complicate
since the elements contained in the higher order interfere
curvaturesCn

(N) , n>3, are labeled by the aperiodic stringsof
complexity N.

However, theN→` limit for the interference coefficients
exist@1,9,10#, and thereforez functionz21 has the following
expansion form:
04620
x-

n

tal

ts

ce

zN→`
21 512zE t f~v!m~dv!2z2S C2

N1E c2~v!m~d2v! D
2z3S C3

N1E t f~v!m~dv!E c2~v!m~d2v!

1E t fc2~v!m~d3v!2E c3~v!m~d3v! D
1O~z4!.

This expansion is analogous to the cumulant expansion
det(12zL) obtained in@10#.

VI. CONCLUSION

From a practical as well as from a theoretical point
view, it is certainly more convenient to treat the continuo
sum case using the methods developed in@9,10#, because
these methods effectively circumvent some convoluted
culations, which are necessary to evaluate the expansion
efficients ~17!. However, for discrete versions of suc
‘‘noisy’’ PF operators, the multiple sums~14!, these methods
cannot be applied directly. Meanwhile, as was shown abo
such systems allow a direct treatment which is analogou
the standard cycle expansion technique. The detailed form
the corresponding expansion coefficients~17! reveals a re-
markable structural simplicity and shows certain a famil
features characteristic for the single-operator expansion
efficients.

In practice, even in the case of a single PF operator,
can usually obtain only the first several terms of the cy
expansion series. In the case of multiple PF operators,
explicit form of the generalized curvatures~17! conveniently
illustrates the details of the interference between the differ
maps constituting a multiple PF operator, using the langu
of the periodic cycles arising from the maps themselves
well as their compositions. This provides a nontrivial exte
sion of the periodic orbit theory to a more complicat
dynamical evolution which involves a few ’’evolution
channels.’’
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